快速报名
首页 / 干货教程 / Python教程 / python机器学习教程06 Tensorflow1基本使用

python机器学习教程06 Tensorflow1基本使用

Tensorflow基本使用

确认安装Tensorflow

import tensorflow as tf

a = tf.constant(10)

b = tf.constant(32)

sess = tf.Session()

print(sess.run(a+b))

42

获取MNIST数据集

# 获取MNIST数据集

# 获取地址:https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/examples/tutorials/mnist/input_data.py

# Copyright 2015 Google Inc. All Rights Reserved.

#

# Licensed under the Apache License, Version 2.0 (the "License");

# you may not use this file except in compliance with the License.

# You may obtain a copy of the License at

#

#    http://www.apache.org/licenses/LICENSE-2.0

#

# Unless required by applicable law or agreed to in writing, software

# distributed under the License is distributed on an "AS IS" BASIS,

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

# See the License for the specific language governing permissions and

# limitations under the License.

# ==============================================================================

"""Functions for downloading and reading MNIST data."""

from __future__ import absolute_import

from __future__ import division

from __future__ import print_function

import gzip

import os

import tensorflow.python.platform

import numpy

from six.moves import urllib

from six.moves import xrange  # pylint: disable=redefined-builtin

import tensorflow as tf

SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'

def maybe_download(filename, work_directory):

    """Download the data from Yann's website, unless it's already here."""

    if not os.path.exists(work_directory):

        os.mkdir(work_directory)

    filepath = os.path.join(work_directory, filename)

    if not os.path.exists(filepath):

        filepath, _ = urllib.request.urlretrieve(

            SOURCE_URL + filename, filepath)

        statinfo = os.stat(filepath)

        print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')

    return filepath

def _read32(bytestream):

    dt = numpy.dtype(numpy.uint32).newbyteorder('>')

    return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]

def extract_images(filename):

    """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""

    print('Extracting', filename)

    with gzip.open(filename) as bytestream:

        magic = _read32(bytestream)

        if magic != 2051:

            raise ValueError(

                'Invalid magic number %d in MNIST image file: %s' %

                (magic, filename))

        num_images = _read32(bytestream)

        rows = _read32(bytestream)

        cols = _read32(bytestream)

        buf = bytestream.read(rows * cols * num_images)

        data = numpy.frombuffer(buf, dtype=numpy.uint8)

        data = data.reshape(num_images, rows, cols, 1)

        return data

def dense_to_one_hot(labels_dense, num_classes=10):

    """Convert class labels from scalars to one-hot vectors."""

    num_labels = labels_dense.shape[0]

    index_offset = numpy.arange(num_labels) * num_classes

    labels_one_hot = numpy.zeros((num_labels, num_classes))

    labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1

    return labels_one_hot

def extract_labels(filename, one_hot=False):

    """Extract the labels into a 1D uint8 numpy array [index]."""

    print('Extracting', filename)

    with gzip.open(filename) as bytestream:

        magic = _read32(bytestream)

        if magic != 2049:

            raise ValueError(

                'Invalid magic number %d in MNIST label file: %s' %

                (magic, filename))

        num_items = _read32(bytestream)

        buf = bytestream.read(num_items)

        labels = numpy.frombuffer(buf, dtype=numpy.uint8)

        if one_hot:

            return dense_to_one_hot(labels)

        return labels

class DataSet(object):

    def __init__(self, images, labels, fake_data=False, one_hot=False,

                dtype=tf.float32):

        """Construct a DataSet.

        one_hot arg is used only if fake_data is true.  `dtype` can be either

        `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into

        `[0, 1]`.

        """

        dtype = tf.as_dtype(dtype).base_dtype

        if dtype not in (tf.uint8, tf.float32):

            raise TypeError('Invalid image dtype %r, expected uint8 or float32' %

                            dtype)

        if fake_data:

            self._num_examples = 10000

            self.one_hot = one_hot

        else:

            assert images.shape[0] == labels.shape[0], (

                'images.shape: %s labels.shape: %s' % (images.shape,

                                                      labels.shape))

            self._num_examples = images.shape[0]

            # Convert shape from [num examples, rows, columns, depth]

            # to [num examples, rows*columns] (assuming depth == 1)

            assert images.shape[3] == 1

            images = images.reshape(images.shape[0],

                                    images.shape[1] * images.shape[2])

            if dtype == tf.float32:

                # Convert from [0, 255] -> [0.0, 1.0].

                images = images.astype(numpy.float32)

                images = numpy.multiply(images, 1.0 / 255.0)

        self._images = images

        self._labels = labels

        self._epochs_completed = 0

        self._index_in_epoch = 0

    @property

    def images(self):

        return self._images

    @property

    def labels(self):

        return self._labels

    @property

    def num_examples(self):

        return self._num_examples

    @property

    def epochs_completed(self):

        return self._epochs_completed

    def next_batch(self, batch_size, fake_data=False):

        """Return the next `batch_size` examples from this data set."""

        if fake_data:

            fake_image = [1] * 784

            if self.one_hot:

                fake_label = [1] + [0] * 9

            else:

                fake_label = 0

            return [fake_image for _ in xrange(batch_size)], [

                fake_label for _ in xrange(batch_size)]

        start = self._index_in_epoch

        self._index_in_epoch += batch_size

        if self._index_in_epoch > self._num_examples:

            # Finished epoch

            self._epochs_completed += 1

            # Shuffle the data

            perm = numpy.arange(self._num_examples)

            numpy.random.shuffle(perm)

            self._images = self._images[perm]

            self._labels = self._labels[perm]

            # Start next epoch

            start = 0

            self._index_in_epoch = batch_size

            assert batch_size <= self._num_examples

        end = self._index_in_epoch

        return self._images[start:end], self._labels[start:end]

def read_data_sets(train_dir, fake_data=False, one_hot=False, dtype=tf.float32):

    class DataSets(object):

        pass

    data_sets = DataSets()

    if fake_data:

        def fake():

            return DataSet([], [], fake_data=True, one_hot=one_hot, dtype=dtype)

        data_sets.train = fake()

        data_sets.validation = fake()

        data_sets.test = fake()

        return data_sets

    TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'

    TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'

    TEST_IMAGES = 't10k-images-idx3-ubyte.gz'

    TEST_LABELS = 't10k-labels-idx1-ubyte.gz'

    VALIDATION_SIZE = 5000

    local_file = maybe_download(TRAIN_IMAGES, train_dir)

    train_images = extract_images(local_file)

    local_file = maybe_download(TRAIN_LABELS, train_dir)

    train_labels = extract_labels(local_file, one_hot=one_hot)

    local_file = maybe_download(TEST_IMAGES, train_dir)

    test_images = extract_images(local_file)

    local_file = maybe_download(TEST_LABELS, train_dir)

    test_labels = extract_labels(local_file, one_hot=one_hot)

    validation_images = train_images[:VALIDATION_SIZE]

    validation_labels = train_labels[:VALIDATION_SIZE]

    train_images = train_images[VALIDATION_SIZE:]

    train_labels = train_labels[VALIDATION_SIZE:]

    data_sets.train = DataSet(train_images, train_labels, dtype=dtype)

    data_sets.validation = DataSet(validation_images, validation_labels,

                                  dtype=dtype)

    data_sets.test = DataSet(test_images, test_labels, dtype=dtype)

    return data_sets

使用Tensorflow训练——Softmax回归

# 使用Tensorflow 训练——Softmax回归

import time

import tensorflow as tf

# 读取 MNIST 数据集,分成训练数据和测试数据

mnist = read_data_sets('MNIST_data/', one_hot=True)

# 设置训练数据 x,连接权重 W 和偏置 b

x = tf.placeholder('float', [None, 784])

W = tf.Variable(tf.zeros([784, 10]))

b = tf.Variable(tf.zeros([10]))

# 对 x 和 W 进行内积运算后把结果传递给 softmax 函数,计算输出 y

y = tf.nn.softmax(tf.matmul(x, W)+b)

# 设置期望输出 y_

y_ = tf.placeholder('float', [None, 10])

# 计算交叉熵代价函数

cross_entropy = -tf.reduce_sum(y_*tf.log(y))

# 使用梯度下降法最小化交叉熵代价函数

train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)

# 初始化所有参数

init = tf.global_variables_initializer()

sess = tf.Session()

sess.run(init)

st = time.time()

# 迭代训练

for i in range(1000):

    # 选择训练数据(mini-batch)

    batch_xs, batch_ys = mnist.train.next_batch(100)

    # 训练处理

    sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})

# 进行测试,确认实际输出和期望输出是否一致

correct_prediction = tf.equal(tf.argmax(y, -1), tf.argmax(y_, 1))

softmax_time = time.time()-st

# 计算准确率

accuary = tf.reduce_mean(tf.cast(correct_prediction, 'float'))

print('准确率:%s' % sess.run(accuary, feed_dict={

      x: mnist.test.images, y_: mnist.test.labels}))

softmax_acc = sess.run(accuary, feed_dict={

                      x: mnist.test.images, y_: mnist.test.labels})

Extracting MINIST_data/train-images-idx3-ubyte.gz

Extracting MINIST_data/train-labels-idx1-ubyte.gz

Extracting MINIST_data/t10k-images-idx3-ubyte.gz

Extracting MINIST_data/t10k-labels-idx1-ubyte.gz

准确率:0.9191

使用Tensorflow训练——卷积神经网络

构建网络组件

# 构建网络组件

import time

import tensorflow as tf

def weight_variable(shape):

    """

    初始化连接权重

    """

    # truncated_normal()根据指定的标准差创建随机数

    initial = tf.truncated_normal(shape, stddev=0.1)

    return tf.Variable(initial)

def bias_variable(shape):

    """

    初始化偏置

    """

    initial = tf.constant(0.1, shape=shape)

    return tf.Variable(initial)

def conv2d(x, W):

    """

    构建卷积层

    x: 输入数据,四维参数——批大小、高度、宽度和通道数

    W: 卷积核参数,四维参数——卷积核高度、卷积核宽度、输入通道数和输出通道数

    """

    # strides设置卷积核移动的步长,strides=[1,2,2,1]步长为2

    # padding设置是否补零填充,padding='SAME'为填充;padding='VALID'为不填充

    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2x2(x):

    """

    构建池化层

    x: 输入数据,四维参数——批大小、高度、宽度和通道数

    """

    # ksize设置池化窗口的大小,四维参数——批大小、高度、宽度和通道数

    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

# 读取MNIST数据集

mnist = read_data_sets('MNIST_data', one_hot=True)

# 输入数据,二维数据shape=[批大小, 数据维度]

x = tf.placeholder('float', shape=[None, 784])

# 期望输出

y_ = tf.placeholder('float', shape=[None, 10])

# 修改数据集格式(批大小*28*28*通道数),即把二维数据修改成四维张量[-1,28,28,1]

x_image = tf.reshape(x, [-1, 28, 28, 1])

定义网络结构

# 定义网络结构

# 第1个卷积层,weight_variable([卷积核高度,卷积核宽度,通道数,卷积核个数])

W_conv1 = weight_variable([5, 5, 1, 32])

b_conv1 = bias_variable([32])

# 激活函数及池化

h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1)+b_conv1)

h_pool = max_pool_2x2(h_conv1)

# 第2个卷积层

W_conv2 = weight_variable([5, 5, 32, 64])

b_conv2 = bias_variable([64])

# 激活函数及池化

h_conv2 = tf.nn.relu(conv2d(h_pool, W_conv2)+b_conv2)

h_pool2 = max_pool_2x2(h_conv2)

# 设置全连接层的参数

W_fc1 = weight_variable([7*7*64, 1024])

b_fc1 = bias_variable([1024])

# 全连接层

h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])

h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1)+b_fc1)

# Dropout

keep_prob = tf.placeholder('float')

h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

# 设置全连接层的参数

W_fc2 = weight_variable([1024, 10])

b_fc2 = bias_variable([10])

# softmax 函数

y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2)+b_fc2)

# 误差函数,交叉熵代价函数

cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))

训练模型

# 训练模型

# 训练方法

train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

# 测试方法

correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))

accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))

# 创建训练用的会话

sess = tf.Session()

# 初始化参数

sess.run(tf.global_variables_initializer())

st = time.time()

# 迭代处理

for i in range(1000):

    # 选择训练数据(mini-batch)

    batch = mnist.train.next_batch(50)

    # 训练处理

    _, loss_value = sess.run([train_step, cross_entropy], feed_dict={

                            x: batch[0], y_: batch[1], keep_prob: 0.5})

    # 测试

    if i % 100 == 0:

        acc = sess.run(accuracy, feed_dict={

            x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.})

        print(f'卷积神经网络迭代 {i} 次的准确率:{acc}')

print(f'Softmax回归训练时间:{softmax_time}')

print(f'卷积神经网络训练时间:{time.time()-st}')

# 测试

acc = sess.run(accuracy, feed_dict={

              x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.})

print(f'Softmax回归准确率:{softmax_acc}')

print(f'卷积神经网络准确率:{acc}')

卷积神经网络迭代 0 次的准确率:0.08910000324249268

卷积神经网络迭代 100 次的准确率:0.8474000096321106

卷积神经网络迭代 200 次的准确率:0.9085000157356262

卷积神经网络迭代 300 次的准确率:0.9266999959945679

卷积神经网络迭代 400 次的准确率:0.9399999976158142

卷积神经网络迭代 500 次的准确率:0.9430999755859375

卷积神经网络迭代 600 次的准确率:0.953499972820282

卷积神经网络迭代 700 次的准确率:0.9571999907493591

卷积神经网络迭代 800 次的准确率:0.9599999785423279

卷积神经网络迭代 900 次的准确率:0.9613000154495239

Softmax回归训练时间:2.030284881591797

卷积神经网络训练时间:394.48987913131714

Softmax回归准确率:0.9190999865531921

卷积神经网络准确率:0.9670000076293945

使用Tensorflow进行可视化

# 使用Tensorflow进行可视化

# Copyright 2015 Google Inc. All Rights Reserved.

#

# Licensed under the Apache License, Version 2.0 (the "License");

# you may not use this file except in compliance with the License.

# You may obtain a copy of the License at

#

#    http://www.apache.org/licenses/LICENSE-2.0

#

# Unless required by applicable law or agreed to in writing, software

# distributed under the License is distributed on an "AS IS" BASIS,

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

# See the License for the specific language governing permissions and

# limitations under the License.

# ==============================================================================

"""Functions for downloading and reading MNIST data."""

from __future__ import absolute_import

from __future__ import division

from __future__ import print_function

import gzip

import os

import time

import tensorflow.python.platform

import numpy

from six.moves import urllib

from six.moves import xrange  # pylint: disable=redefined-builtin

import tensorflow as tf

SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'

def maybe_download(filename, work_directory):

    """Download the data from Yann's website, unless it's already here."""

    if not os.path.exists(work_directory):

        os.mkdir(work_directory)

    filepath = os.path.join(work_directory, filename)

    if not os.path.exists(filepath):

        filepath, _ = urllib.request.urlretrieve(

            SOURCE_URL + filename, filepath)

        statinfo = os.stat(filepath)

        print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')

    return filepath

def _read32(bytestream):

    dt = numpy.dtype(numpy.uint32).newbyteorder('>')

    return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]

def extract_images(filename):

    """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""

    print('Extracting', filename)

    with gzip.open(filename) as bytestream:

        magic = _read32(bytestream)

        if magic != 2051:

            raise ValueError(

                'Invalid magic number %d in MNIST image file: %s' %

                (magic, filename))

        num_images = _read32(bytestream)

        rows = _read32(bytestream)

        cols = _read32(bytestream)

        buf = bytestream.read(rows * cols * num_images)

        data = numpy.frombuffer(buf, dtype=numpy.uint8)

        data = data.reshape(num_images, rows, cols, 1)

        return data

def dense_to_one_hot(labels_dense, num_classes=10):

    """Convert class labels from scalars to one-hot vectors."""

    num_labels = labels_dense.shape[0]

    index_offset = numpy.arange(num_labels) * num_classes

    labels_one_hot = numpy.zeros((num_labels, num_classes))

    labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1

    return labels_one_hot

def extract_labels(filename, one_hot=False):

    """Extract the labels into a 1D uint8 numpy array [index]."""

    print('Extracting', filename)

    with gzip.open(filename) as bytestream:

        magic = _read32(bytestream)

        if magic != 2049:

            raise ValueError(

                'Invalid magic number %d in MNIST label file: %s' %

                (magic, filename))

        num_items = _read32(bytestream)

        buf = bytestream.read(num_items)

        labels = numpy.frombuffer(buf, dtype=numpy.uint8)

        if one_hot:

            return dense_to_one_hot(labels)

        return labels

class DataSet(object):

    def __init__(self, images, labels, fake_data=False, one_hot=False,

                dtype=tf.float32):

        """Construct a DataSet.

        one_hot arg is used only if fake_data is true.  `dtype` can be either

        `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into

        `[0, 1]`.

        """

        dtype = tf.as_dtype(dtype).base_dtype

        if dtype not in (tf.uint8, tf.float32):

            raise TypeError('Invalid image dtype %r, expected uint8 or float32' %

                            dtype)

        if fake_data:

            self._num_examples = 10000

            self.one_hot = one_hot

        else:

            assert images.shape[0] == labels.shape[0], (

                'images.shape: %s labels.shape: %s' % (images.shape,

                                                      labels.shape))

            self._num_examples = images.shape[0]

            # Convert shape from [num examples, rows, columns, depth]

            # to [num examples, rows*columns] (assuming depth == 1)

            assert images.shape[3] == 1

            images = images.reshape(images.shape[0],

                                    images.shape[1] * images.shape[2])

            if dtype == tf.float32:

                # Convert from [0, 255] -> [0.0, 1.0].

                images = images.astype(numpy.float32)

                images = numpy.multiply(images, 1.0 / 255.0)

        self._images = images

        self._labels = labels

        self._epochs_completed = 0

        self._index_in_epoch = 0

    @property

    def images(self):

        return self._images

    @property

    def labels(self):

        return self._labels

    @property

    def num_examples(self):

        return self._num_examples

    @property

    def epochs_completed(self):

        return self._epochs_completed

    def next_batch(self, batch_size, fake_data=False):

        """Return the next `batch_size` examples from this data set."""

        if fake_data:

            fake_image = [1] * 784

            if self.one_hot:

                fake_label = [1] + [0] * 9

            else:

                fake_label = 0

            return [fake_image for _ in xrange(batch_size)], [

                fake_label for _ in xrange(batch_size)]

        start = self._index_in_epoch

        self._index_in_epoch += batch_size

        if self._index_in_epoch > self._num_examples:

            # Finished epoch

            self._epochs_completed += 1

            # Shuffle the data

            perm = numpy.arange(self._num_examples)

            numpy.random.shuffle(perm)

            self._images = self._images[perm]

            self._labels = self._labels[perm]

            # Start next epoch

            start = 0

            self._index_in_epoch = batch_size

            assert batch_size <= self._num_examples

        end = self._index_in_epoch

        return self._images[start:end], self._labels[start:end]

def read_data_sets(train_dir, fake_data=False, one_hot=False, dtype=tf.float32):

    class DataSets(object):

        pass

    data_sets = DataSets()

    if fake_data:

        def fake():

            return DataSet([], [], fake_data=True, one_hot=one_hot, dtype=dtype)

        data_sets.train = fake()

        data_sets.validation = fake()

        data_sets.test = fake()

        return data_sets

    TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'

    TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'

    TEST_IMAGES = 't10k-images-idx3-ubyte.gz'

    TEST_LABELS = 't10k-labels-idx1-ubyte.gz'

    VALIDATION_SIZE = 5000

    local_file = maybe_download(TRAIN_IMAGES, train_dir)

    train_images = extract_images(local_file)

    local_file = maybe_download(TRAIN_LABELS, train_dir)

    train_labels = extract_labels(local_file, one_hot=one_hot)

    local_file = maybe_download(TEST_IMAGES, train_dir)

    test_images = extract_images(local_file)

    local_file = maybe_download(TEST_LABELS, train_dir)

    test_labels = extract_labels(local_file, one_hot=one_hot)

    validation_images = train_images[:VALIDATION_SIZE]

    validation_labels = train_labels[:VALIDATION_SIZE]

    train_images = train_images[VALIDATION_SIZE:]

    train_labels = train_labels[VALIDATION_SIZE:]

    data_sets.train = DataSet(train_images, train_labels, dtype=dtype)

    data_sets.validation = DataSet(validation_images, validation_labels,

                                  dtype=dtype)

    data_sets.test = DataSet(test_images, test_labels, dtype=dtype)

    return data_sets

def weight_variable(shape):

    """

    初始化连接权重

    """

    # truncated_normal()根据指定的标准差创建随机数

    initial = tf.truncated_normal(shape, stddev=0.1)

    return tf.Variable(initial)

def bias_variable(shape):

    """

    初始化偏置

    """

    initial = tf.constant(0.1, shape=shape)

    return tf.Variable(initial)

def conv2d(x, W):

    """

    构建卷积层

    x: 输入数据,四维参数——批大小、高度、宽度和通道数

    W: 卷积核参数,四维参数——卷积核高度、卷积核宽度、输入通道数和输出通道数

    """

    # strides设置卷积核移动的步长,strides=[1,2,2,1]步长为2

    # padding设置是否补零填充,padding='SAME'为填充;padding='VALID'为不填充

    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2x2(x):

    """

    构建池化层

    x: 输入数据,四维参数——批大小、高度、宽度和通道数

    """

    # ksize设置池化窗口的大小,四维参数——批大小、高度、宽度和通道数

    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

# 读取MNIST数据集

mnist = read_data_sets('MNIST_data', one_hot=True)

# # 输入数据,二维数据shape=[批大小, 数据维度]

# x = tf.placeholder('float', shape=[None, 784])

# # 期望输出

# y_ = tf.placeholder('float', shape=[None, 10])

# 通过as_default()生成一个计算图

with tf.Graph().as_default():

    # 设置数据集和期望输出

    x = tf.placeholder('float', shape=[None, 784], name='Input')

    y_ = tf.placeholder('float', shape=[None, 10], name='GroundTruth')

    # 修改数据集格式(批大小*28*28*通道数),即把二维数据修改成四维张量[-1,28,28,1]

    x_image = tf.reshape(x, [-1, 28, 28, 1])

    # 第1个卷积层,weight_variable([卷积核高度,卷积核宽度,通道数,卷积核个数])

    W_conv1 = weight_variable([5, 5, 1, 32])

    b_conv1 = bias_variable([32])

    # 激活函数及池化

    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1)+b_conv1)

    h_pool = max_pool_2x2(h_conv1)

    # 第2个卷积层

    W_conv2 = weight_variable([5, 5, 32, 64])

    b_conv2 = bias_variable([64])

    # 激活函数及池化

    h_conv2 = tf.nn.relu(conv2d(h_pool, W_conv2)+b_conv2)

    h_pool2 = max_pool_2x2(h_conv2)

    # 设置全连接层的参数

    W_fc1 = weight_variable([7*7*64, 1024])

    b_fc1 = bias_variable([1024])

    # 全连接层

    h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])

    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1)+b_fc1)

    # Dropout

    keep_prob = tf.placeholder('float')

    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

    # 设置全连接层的参数

    W_fc2 = weight_variable([1024, 10])

    b_fc2 = bias_variable([10])

    # softmax 函数

    # y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2)+b_fc2)

    with tf.name_scope('Output') as scope:

        y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2)+b_fc2)

    # 误差函数,交叉熵代价函数

    # cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))

    with tf.name_scope('xentropy') as scope:

        cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))

        # tf.summary.scalar()输出训练情况

        ce_summ = tf.summary.scalar('cross_entropy', cross_entropy)

    # 训练方法

    # train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

    with tf.name_scope('train') as scope:

        train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

    # 测试方法

    # correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))

    # accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))

    with tf.name_scope('test') as scope:

        correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))

        accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))

        accuracy_summary = tf.summary.scalar('accuracy', accuracy)

    # 创建训练用的会话

    sess = tf.Session()

    # 初始化参数

    sess.run(tf.global_variables_initializer())

    # 训练情况的输出设置(新增)

    # 把设置的所有输出操作合并为一个操作

    summary_op = tf.summary.merge_all()

    # tf.summary.FileWriter()保存训练数据,graph_def为图(网络结构)

    summary_writer = tf.summary.FileWriter('MNIST_data', graph_def=sess.graph_def)

    st = time.time()

    # 迭代处理

    for i in range(1000):

        # 选择训练数据(mini-batch)

        batch = mnist.train.next_batch(50)

        # 训练处理

        _, loss_value = sess.run([train_step, cross_entropy], feed_dict={

                                x: batch[0], y_: batch[1], keep_prob: 0.5})

        # 测试

        if i % 100 == 0:

            #        acc = sess.run(accuracy, feed_dict={

            #            x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.})

            # summary_op输出训练数据,accuracy进行测试

            result = sess.run([summary_op, accuracy], feed_dict={

                x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.})

            # 传递summary_op

            summary_str = result[0]

            # 传递acc

            acc = result[1]

            # add_summary()输出summary_str的内容

            summary_writer.add_summary(summary_str, i)

            print(f'卷积神经网络迭代 {i} 次的准确率:{acc}')

    print(f'卷积神经网络训练时间:{time.time()-st}')

    # 测试

    acc = sess.run(accuracy, feed_dict={

                  x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.})

    print(f'卷积神经网络准确率:{acc}')

Extracting MNIST_data/train-images-idx3-ubyte.gz

Extracting MNIST_data/train-labels-idx1-ubyte.gz

Extracting MNIST_data/t10k-images-idx3-ubyte.gz

Extracting MNIST_data/t10k-labels-idx1-ubyte.gz

WARNING:tensorflow:Passing a `GraphDef` to the SummaryWriter is deprecated. Pass a `Graph` object instead, such as `sess.graph`.

卷积神经网络迭代 0 次的准确率:0.11810000240802765

卷积神经网络迭代 100 次的准确率:0.8456000089645386

卷积神经网络迭代 200 次的准确率:0.9088000059127808

卷积神经网络迭代 300 次的准确率:0.9273999929428101

卷积神经网络迭代 400 次的准确率:0.935699999332428

卷积神经网络迭代 500 次的准确率:0.9404000043869019

卷积神经网络迭代 600 次的准确率:0.9490000009536743

卷积神经网络迭代 700 次的准确率:0.951200008392334

卷积神经网络迭代 800 次的准确率:0.95660001039505

卷积神经网络迭代 900 次的准确率:0.9592999815940857

卷积神经网络训练时间:374.29131293296814

卷积神经网络准确率:0.963699996471405

终端运行:tensorboard --logdir ~/Desktop/jupyter/deepLearning/图解深度学习-tensorflow/MNIST_data Starting Tensor- Board on port 6006

其中--logdir指定的是完整路径目录

抢先报名    优先占座